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Abstract

The increasing performance and decreasing cost
of processors and memory are causing system
intelligence to move into peripherals from the
CPU. Storage system designers are using this
trend toward “excess” compute power to perform
more complex processing and optimizations
inside storage devices. To date, such optimiza-
tions have been at relatively low levels of the stor-
age protocol. At the same time, trends in storage
density, mechanics, and electronics are eliminat-
ing the bottleneck in moving data off the media
and putting pressure on interconnects and host
processors to move data more efficiently. We pro-
pose a system calledctive Disksthat takes
advantage of processing power on individual disk
drives to run application-level code. Moving por-
tions of an application’s processing to execute
directly at disk drives can dramatically reduce
data traffic and take advantage of the storage par-
allelism already present in large systems today.
We discuss several types of applications that
would benefit from this capability with a focus on
the areas of database, data mining, and multime-
dia. We develop an analytical model of the speed-
ups possible for scan-intensive applications in an
Active Disk system. We also experiment with a
prototype Active Disk system using relatively
low-powered processors in comparison to a data-
base server system with a single, fast processor.
Our experiments validate the intuition in our
model and demonstrate speedups of 2x on 10
disks across four scan-based applications. The
model promises linear speedups in disk arrays of
hundreds of disks, provided the application data is
large enough.
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1 Introduction

In this paper we evaluate the performance advantages of
exploiting the processors embedded in individual storage
device for some of the data-intensive applications common
in data mining and multimedia databases. This system is
architecturally similar to the processor-per-disk database
machines dismissed in the literature 15 years ago as expen-
sive and unnecessary. In the intervening years, technology
trends have made possible commaodity storage devices with
excess general-purpose computational power and applica-
tion trends are creating massive, complex data sets com-
monly processed with scans. It will soon be possible for
collections of commodity storage devices to couple paral-
lel processing and high-selectivity filtering to dramatically
reduce execution time for many of these applications.

General purpose microcontrollers with 100-200 MHz
processing speeds are common in disk array controllers
and are already being incorporated into high-end commod-
ity disk drives. Vendors of storage devices would welcome
new uses for this largely underutilized processing power if
it allowed their products to compete on metrics beyond
simple capacity and cost ($/MB). We propose a storage
device called arActive Diskthat combines in-the-field
software downloadability with recent research in safe
remote execution of code for execution of application-level
functions directly at the device.

In this paper, we emulate an Active Disk with a six-
year-old workstation and contrast host-resident to Active-
Disk-assisted processing of four applications: nearest
neighbor search in a high dimensionality database, fre-
quent set counting to discover association rules, edge
detection in images, and image registration in a medical
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over many disks allows “embarrassingly parallel” scans toand cost of the machine, and 3) a single general purpose
convert a group of Active Disks into a programmable par-host processor was sufficient to execute select at the full
allel-scan database machine, 2) bandwidth reduction data rate of a single disk [DeWitt81, Boral83].
scans that filter data with a high degree of selectivity or ~ Boral and DeWitt concluded that aggregate storage
compute only summary statistics transfer a very small frachandwidth was the principle limitation of database
tion of the data from the disks to the host. For highly selec-machines. Fortunately, as shown in Table 1, in the inter-
tive scans, a group of Active Disks can process data at theening years aggregate storage bandwidth has dramatically
aggregate disk rate in a machine whose interconnect banitnproved. The improvement comes from disk array hard-
width was designed for applications demanding much lessvare and software that enable individual database opera-
bandwidth. tions to exploit disk parallelism [Livhy87, Patterson88]
Section 2 compares our work with past research orand because databases are now large enough to justify hun-
database processing performed at storage (i.e. databadeeds of disks. Moreover, high-end disk rates are now
machines), discusses the trends in storage systems thHs MB/s sustained [Seagate97] and continue to grow at
have brought us to this point, and motivates the areas c40% per year [Grochowski96]. In place of raw disk band-
data mining and multimedia as fertile ground for applica-width limitations, modern systems have a limited periph-
tions of Active Disks. Section 3 provides an analytical eral interconnect bandwidth, as seen in the system bus
model to illustrate the potential benefit of using Active column of Table 1. We see that more MB/s can be read into
Disks and give some intuition on the speedups possiblehe memory of a large collection of disk controllers than
Section 4 outlines the four representative applications wean be delivered to a host processor. In this case, the power
have chosen for detailed study. Section 5 describes owf the host is irrelevant to the overall bandwidth limitation
experimental setup and compares the performance of dor large scans.
existing server system to a prototype system using Active  If we next consider the objection to the cost and com-
Disks. Section 6 further explores issues of performancelexity of special-purpose hardware in database machines,
and the characteristics of applications that make them sudechnology trends again change the trade-offs. The increas-
cessful on Active Disks. Section 7 discusses related worling transistor count possible in inexpensive CMOS micro-
in the area. Finally, Section 8 concludes and briefly dischips today is driving the use of microprocessors in
cusses areas of future work. increasingly simple and inexpensive devices. Network
interfaces, peripheral adapters, digital cameras, graphics
adapters, array controllers and disk drives all have micro-
The prevailing counter-arguments to the databaseontrollers whose processing power exceeds the host pro-
machines of the 80s were that 1) for a significant fractioncessors of 15 years ago. For example, Quantum’s high-end
of database operations, such as sorts and joins, simptiisk drives today contain a 40 MHz Motorola 68000-based
select filters in hardware did not provide significant bene-controller that manages the high-level functions of the
fits, 2) special-purpose hardware increased the design tindrive.

2 Background

On-Disk Storage
System Component Processor . System Bus
y P Processing y Throughput

Compag TPC-C Compag ProLiant 7000 6/200 800 MHz 2,825 MHE 133 MB/s 1,130 MB/s

4 200 MHz Pentiums, 1 PCI (4 x 200 MHz

113 disks = 708 GB (113 x 25 MHZ (113 x 10 MB/)
Microsoft TerraServer Digital AlphaServer 4100 1,600 MHZz| 8,000 MHz 532 MB/g 3,200 MH/s

4 400 MHz Alphas, 2 64-bit PCI (4 x 400 MHz

320 disks = 1.3 TB (320 x 25 MHz (320 x 10 MB/F)
Digital TPC-C Digital AlphaServer 1000/500 500 MHz 1,525 MHz 266 MB/s 610 MB/4

500 MHz Alpha, 64-bit PCI

61 disks = 266 GB (61 x 25 MHz) (61 x 10 MB/Y
Digital TPC-D Digital AlphaServer 4100 1,864 MHz 2,050 MHz 532 MB/s 820 MBJ/s|

4 466 MHz Alphas, 2 64-bit PCI (4 x 466 MHz

82 disks = 353 GB (82 x 25 MHz) (82 x 10 MB/g

Table 1: If we estimate that current disk drives have the equivalent of 25 MHz of host processing speed available, large
database systems today already contain more processing power on their combined disks than at the server processors.
Assuming a reasonable 10 MB/s for sequential scans, we also see that the aggregate storage bandwidth is more than twice the
backplane bandwidth of the machine in almost every case. Data from [TPC98] and [Barclay97].
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Figure 1: The trend in drive electronics is toward higher and higher levels of integration. The Barracuda drive on the left contains
separate chips for servo control, SCSI processing, ECC, and the control microprocessor. The Trident chip in the center has
combined many of the individual specialized chips into a single ASIC, and the next generation of silicon makes it possible to both
integrate the control processor and provide a significantly more powerful embedded core while continuing to reduce total chip
count and cost.

In Figure 1 we show the effects of increasing transistortributed file system scalability [Lee96, VanMeter96,
counts on disk electronics. Figure 1a reminds us that th&ibson97]. With Active Disks, excess computation power
electronics of a disk drive include all the components of ain storage devices is available directly for application-spe-
simple computer; a microcontroller, some amount ofcific function in addition to supporting these existing stor-
RAM, and a communications subsystem (SCSI), in addi-age-specific optimizations. Instead of etching database
tion to the specialized hardware for drive control. functions into silicon as envisioned 15 years ago, Active
Figure 1b shows that this special control hardware ha®isks are programmed in software and use general purpose
already been largely integrated into a single chip in cur-microprocessors.
rent-generation disks. Extrapolating to the next generation = Downloading application code directly into devices
of technology (from .68 micron to .35 micron CMOS in has significant implications for language, safety, and
the ASIC), the specialized drive hardware will occupy resource management [Riedel97]. With block-oriented
about one quarter of the chip, leaving sufficient area tg@pplication codes, it is efficient to exploit standard_ mem-
include a 200 MHz Digital StrongARM microprocessor °"Y management hardware at the drive and provide pro-

[Turley96], for example. Commaodity disk and chip manu- tectqd address spaces for applications as in standa_rd
. . multiprogrammed systems today. For the cases where effi-
facturers are already pursuing processor-in-ASIC technol-

: . ciency, space or cost constraints require that application
ogy. Siemens has announced a chip that offers a 100 I\/lHéode be co-located with “core” drive code, recent research

32-bit microcontroller, up to 2 MB of on-chip RAM with - ,¢ters 4 range of efficient and safe remote execution facili-
up to 800 MB/s bandwidth, external DRAM and DMA ties that provide innovative ways to ensure proper execu-
controllers and customer-specific logic (that is, die area fotion of code and safeguard the integrity of the drive
the functions of Figure 1b) in a .35 micron process[Gosling96, Necula96, Romer96, Bershad95, Small9s,
[TriCore97]. Fundamentally, VLSI technology has evolved Wahbe93]. Some of these mechanisms also promise a
to the point that significant additional computational powerdegree of control over the resource usage of remote func-
comes at negligible cost. tions to aid in balancing utilization of the drive between
Processing power inside drives and storage subdeémand requests, opportunistic optimizations such as read-

systems has already been successfully used to optimiZ@eac:]’ a';]‘_j ge?_a”q requ%sts.b i he i
functions behind standardized interfaces such as SCS]. dT _(Ia,t |rf fo”Jecnon 0 atg ase machines Was.t € |rfn—
This includes many innovative optimizations for storageIte utility of full scan operations. However, a variety o

parallelism, bandwidth and access time [Patterson88‘?m(':‘rging applications require sequential scanning over

Drapeau94, Wilkes95, Ca094, StorageTek94] and for disl—‘_"’lrge amqunts _Of data. We f_°9“5 on tWO_ sets. of appllca-
tions: multimedia and data mining. In multimedia, applica-



Application Rarameters System Brameters Active Disk Rirameters

N;, = number of bytes processed Sepu = CPU speed of the host Sepu = CPU speed of the disk
Nyt = number of bytes produced rq = disk raw read rate rq = active disk raw read rate
w = cycles per byte r, = disk interconnect rate r, = active disk interconnect rate

,_,
1]

run time for traditional system
tactive = fun time for active disk system

Traditional vs. Actve Disk Ratios

oy = Ni/Noue g = ryq/ry a

n= rn'/rn s = Scpul/scpu

tions such as searching by content [Flickner95, Virage98tommunication companies maintain tens of TB of histori-
are particularly good candidates. The user provides a desical call data. Large databases mean many disks, and
able image and requests a set of similar images. The gemherefore, highly parallel Active Disk systems.

eral approach to such a search is to extract feature vector. .

from every image, and then search these feature vectors fgf Basic Approach

nearest neighbors [Faloutsos96]. The dimensionality offhe basic characteristics of successful remote functions for
these vectors may be high (e.g. moments of inertia forActive Disks are that they 1) can leverage the parallelism
shapes [Faloutsos94], colors in histograms for coloravailable in systems with large numbers of disks, 2) oper-
matching, or Fourier coefficients). It is well-known ate with a small amount of state, processing data as it
[Yao85], but only recently highlighted in the database liter-“streams past” from the disk, and 3) execute a relatively
ature [Berchtold97], that for high dimensionalities, sequensmall number of instructions per byte.

tial scanning is competitive with indexing methods because In this section we develop an analytical model for the
of the “dimensionality curse.” Conventional database wis-performance of such applications. The purpose of this
dom is that indices always improve performance over scanmodel is to develop an intuition about the behavior of
ning. This is true for low dimensionalities, or for queries Active Disk systems relative to a traditional server.

on only a few attributes. However, in high dimensionality To keep the model simple, we assume that our appli-
data and nearest neighbor queries, there is a lot of “roomtations have the three characteristics mentioned above,
in the address space and the data points are far from eaélhat disk transfer, disk Computation, interconnect transfer
other. The two major indexing methods, grid-based andnd host computation can be pipelined and overlapped
tree-based, both suffer in high dimensionality data. Grid-With negligible startup and post-processing costs, and that

based methods require exponentially many cells and treé’[\terconn_ect tr_ansfer rate_s_ always exceed single di.Sk “”?tes-
based methods group similar points together, resulting in Starting with fche. tradltlor?al s_erver, overal_l run t|m§ 1S
groups with highly overlapping bounds. One way or the largest of the individual pipeline stages: disk read time,

. . . disk interconnect transfer time, and server processing time
another, a nearest neighbor query will have to visit a large

percentage of the database, effectively reducing the probvthCh gives:
lem to sequential scanning. This is exactly the idea behind t= ma%—'tl[i%, Mn, Nip EW DNB and
d "n Scpu

recent high-dimensionality indexing methods such as X-
trees [Berchtold96] which deliberately revert to sequential
scanning for high dimensionalities.

In data mining, algorithms such as association discov-

ery and classification also require repeated scans of theor the Active Disks system, the comparable times for disk

Ny S
- = mi cpuC]
throughput= e mm%d Org, w O

data [Agrawal96]. read, interconnect transfer, and on-disk processing are:
In addition to supporting complex, scan-based queries, Ne No. N. Ov
trends are toward larger and larger database sizes. One tactive = M- —0 gie—g  and
g g . active Ddl rnl d ESCDU'D

hour of video requires approximately 1 GB of storage and

video databases such as daily news broadcasts can easily  throughput,,,,, =
contain over 1 TB of data [Wactlar96]. Such databases can

be searched by content (video, text, or audio) and utilize

both feature extraction and a combination of the searchingach of these throughput equations is a minimum of three
algorithms mentioned above. Medical image databaselmiting factors: the aggregate disk bandwidth, the storage
also impose similarly heavy data requirements [Arya94].interconnect bandwidth, and the aggregate computation
In data mining applications, point-of-sale data is collectedoandwidth.

over many months and years and grows continually. Tele-

N. N. Sep!
= mingd Oy, 1y G d By
out

active
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Figure 2: A simple model of the throughput of an application running in an Active

A L7 Disk system compared to a traditional single server system. There are several
gl regions of interest, depending on characteristics of the application and the
c . - active disks underlying system configuration. The raw media rate of the disks in both cases is

................

plotted as line A. The raw computation rate in the Active Disk system is line B,
which varies by application. Line C shows the saturation of the interconnect between
the Active Disks and host, which varies with the selectivity of the application
processing. Line D represents the saturation of the server CPU or interconnect in the
. X X traditional system, above which no further gain is possible as additional disks are
: : : added. To the left of point Y, the traditional system is disk-bound. Below the
. ' crossover point X, the Active Disk system is slower than the server system due to its
less powerful CPU. Above point Z, even the Active Disk system is network-
bottlenecked and no further improvement is possible.

Throughput

D R traditional

Number of Disks
If we rewrite the equation for throughput with Active not be able to keep up with the disk transfer rates for many
Disks in terms of the parameters of the traditional servempplications §_,;<w(r; ), their aggregate throughput will
ters - the total data moved (the selectivity, ), the disk¢hart.
bandwidth @, , which should be 1), the interconnect band-  Active Disks saturate their interconnects at line C,
with  throughpugye = 1, oy < min(dOry, d Os,, /W) . Since
x=min(x y) and interconnect bandwidth is assumed to be
throughput e = minB}d d ry), oy Co, Or ), d [ CW"“% greater than a single disk’s bandwidth ér,; ), the num-
ber of disks must be larger than the selectivity of the appli-

This equation captures the basic advantages of Activ€ation (ry foy <rtd ) before this limit sets in. This is
Disks. Applications with high selectivity (large, ) expe- shown to the right of point Z in the figure. With the large
rience less restrictive interconnect limitations, and configuSelectivities of the applications discussed here, we would

rations with many disksdfa.>1 ) can achieve effective expect our perfect overlap assumption to fail (Amdahl's
Law) before this point is reached.

Traditional server systems are likely to exhibit both
3.1 Estimating System Ratios interconnect and server CPU bottlenecks, represented by
The kinds of applications we discuss here exhibit selectividine D in the figure. The point X in the figure, at which the

ties (a,, ) of 100 to 18 or more, providing throughput pos- Active Disk throughput exceeds the traditional server sys-
tem is determined by X, ;/w = min(r, s;,/w) , SO

width (a,, ), and the relative CPU powes( ), we have:

parallel processing.

sible only with effectively infinite interconnect bandwidth
in the traditional system. Practically, this allows systemX = Spy/Sepu = 1/05s.-

cost to be reduced with lower bandwidth interconnects If we combine all of the above analysis and define

while maintaining high throughput. Therefore, we allow speedup as Active Disk throughput over server throughput,
for slower Active Disk interconnects on the order of We findthatford<1/ay , the traditional server is faster. For

0.1<a,<1.0. Active Disk processors will be slower than 1/as<d<ay, the speedup is:

traditional server CPUs. In our experiments, first genera- = %
tion Active Disk CPUs cannot scan data at disk rates. . e
The final and critical system parameter is the ratio of _ T
Active Disk to server processor speed. We expect 100 angnd ford>ay , is:
200 MHz microcontrollers in near-term high-end drives, (r, Cy)
and individual server CPUs of 500 to 1,000 MHz in the S= 0 Senn
same time frame, so a ratio of abayt= 1/5  may be prac- ming,, wiO
tical. In this case, the aggregate Active Disk processing E
power exceeds the server processing power once there are = ma"%‘N [0 Oy E“stg,v‘s;u"-m
more than 5 disks working in parallel. > ay, Cax(a,, ay)
3.2 Implications of the Model for at least the first few generations of Active Disks.

Figure 2 illustrates the basic trade-offs for Active Disk sys-  We do not consider the “slowdown” of Active Disks
tems. The slope of line A represents the raw disk limitationwhend<1/a, (the area to the left of point X in the figure),

in both systems. Because we expect that Active Disks wilbecause this condition is independent of the application
parameters, so a query optimizer can deternapeori



when to prefer traditional execution of the scan for a pardarge. Finally, the state required at the disk is simply the
ticular system configuration, rather than executing the scastorage for the list df closest records.
at the drives. -

Finally, if we consider the prevailing technology 4.2 Data Mining - Frequent Sets
trends, we know that the processor performance (B)Ihe second application is animplementation of the Apriori
improves by 60% per year and disk bandwidth (A) by 40%@algorithm for discovering association rules in sales transac-
per year. This will cause the ratio of processing power tofions [Agrawal95]. Again, we use synthetic data generated
15% per year, narrowing the gap between line A and Blaining transactions from hypothetical point-of-sale infor-

bringing Active Disks closer to the ideal total storage Mation. Each record contains<aransaction id>  , a
bandwidth. <customer id> , and a list of<items> purchased. The
We now look in greater detail at some specific applica-Purpose of the application is to extract rules of the form “if
tions that benefit from Active Disks. a customer purchases item A and B, then they are also
likely to purchase item X” which can be used for store lay-
4 Applications out or inventory decisions. The computation is done in sev-

In this study, we examine four real-world data-intensive€ral passes, first determining the items that occur most

data mining and multimedia applications that meet theoften in the transactions (tHeitemsetsand then using this
assumptions of our Active Disks model. information to generate pairs of items that occur oftn (

) itemset}y and larger groupingsk{itemsets The threshold
4.1 Database - Nearest Neighbor Search of “often” is called thesupportfor a particular itemset and
Our first application is a variation on a standard databasg; g input parameter to the application (e.g. requiring sup-
search that determines tHe items in a database of nort of 19 for a rule means that 1% of the transactions in
attributes that are closest to a particular input item. We us@he database contain a particular itemset). ltemsets are
synthetic data from the Quest data mining group at IBMgetermined by successive scans over the data, at each phase
Almaden [Quest97] which contains records of individuals sjng the result of thé-itemset counts to create a list of
applying for loans and includes information on nine inde'candidate(k+1)-itemsets, until there are nk-itemsets
pendent attributesi<age>, <education> , <salary> |, above the desired support.
<commission> , <zip code> , <make of car> , <cost For the Active Disks system, the counting portion of
of house> , <loan amount> , and<years owned> . In o450 phase is performed directly at the drives. The central
searches such as this across a large number of attributesgiter produces the list of candidatétemsets and pro-

has been shown that a scan of the entire database is as e{fjges this list to each of the disks. Each disk counts its por-
cient as building extensive indices [Berchtold97]. There-;q of the transactions locally, and returns these counts to
fore, an Active Disk scan is appropriate. The basiCihe server. The server then combines these counts and pro-
application uses a target record as input and processeg,ces a list of candidaté+1)-itemsets which are sent
records from the database, always keeping a list ofkthe pacy 1o the disks. The application reduces the arbitrarily

closest matches so far and adding the current record to thﬁrge number of transactions in a database into a single,
list if it is closer than any already in the list. Distance, for variably-sized set of summary statistics - the itemset

the purpose of comparison is the sum of the simple cartezonts - that can be used to determine relationships in the
sian distance across the range of each attribute. For catgzianase. The state required at the disk is the storage for

gorical attributes we use the Hamming distance, a distancge candidaté-itemsets and their counts at each state.
of 0.0 is assigned if the values match exactly, otherwise 1.0

is assigned. 4.3 Multimedia - Edge Detection

For the Active Disks system, each disk is assigned afror image processing, we looked at an application that
integral number of records and the comparisons are pefletects edges and corners in a set of grayscale images
formed directly at the drives. The central server sends th€Smith95]. We use real images from Almaden’s CattleCam
target record to each of the disks which determine the tefAlmaden97] and attempt to detect cows in the landscape
closest records in their portions of the database. These lisgPove San Jose. The application processes a set of 256 KB
are returned to the server which combines them to deteimages and returns only the edges found in the data using a
mine the overall ten closest records. Because the applicdixed 37 pixel mask. The intent is to model a class of image
tion reduces the records in a database of arbitrary size toRfocessing applications where only a particular set of fea-

constant-sized list of ten records, selectivity is arbitrarilytures (€.g. the edges) in an image are important, rather than
the entire image. This includes tracking, feature extraction,
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Figure 3: Edge detection in a
scene outside the IBM Almaden
Research Center. On the left is Mo
the raw image and on the right T
are the edges detected with a
brightness threshold of 75. o~

and positioning applications that operate on only a smalamount of data transferred to the server by a large, fixed
subset of the original images data. This application is sigfraction. The state required at the disk is the storage for the
nificantly more computation-intensive than the compari-reference image and the current image.

sons and counting of the first two applications.

Using the Active Disks system, edge detection for
each image is performed directly at the drives and only théDur experimental testbed contains ten prototype Active
edges are returned to the central server. A request for thBisks, each one a six-year-old DEC Alpha 3000/400
raw image in Figure 3 returns only the data on the right,(133 MHz, 64 MB, Digital UNIX 3.2g) with two 2.0 GB
which can be represented much more compactly. Th&eagate ST52160 Medalist disks. For the server case, we
application reduces the amount of data transferred to thase a single DEC AlphaStation 500/500 (500 MHz,
server by a large fraction (from 256 KB to 9 KB for this 256 MB, Digital UNIX 3.2g) with four 4.5 GB Seagate
particular image). The state required on disk is the storag€T34501W Cheetah disks on two Ultra-Wide SCSI busses
for a single image that is buffered and processed as &vith more bandwidth than the server can use). All these
whole. machines are connected by an Ethernet switch and a

4.4 Multimedia - Image Registration 155 Mb/s OC-3 ATM switch.

Our second image processing application performs the Our experiments compare the performance of a single
. . 1age pre g app np Server machine with directly-attached SCSI disks against
image registration portion of the processing of an MRI

brain scan analysis [Welling98]. Image registration deterthe same machine with network-attached Active Disks,
. Y gvel. ge reg ) each of which is a workstation with two directly-attached
mines the set of parameters necessary to register (rota@

. . . CSI disks in our prototype. In the Active Disk experi-
and translate) an image with respect to a reference image in : : :
ments, as we increase the number of disks we increase the

order to compensate for movement of the subject durin
%E"tal amount of data processed, so the results we report are

5 Prototype / Experiments

the scanning. The application processes a set of 384 K e throughputs (MB/s) for both systems. These results all

images and returns a set of registration parameters for cahow significant improvements with Active Disks and con-

|mage. This appllcatlo_n IS the most cpmputanonally Inten_firm the intuition provided by the model of Section 3.
sive of the ones studied. The algorithm performs a Fast

Fourier Transform (FFT), determines the parameters irp-1 Database - Nearest Neighbor Search
Fourier space and computes an inverse-FFT on the resulkigure 4 compares the performance of the single server
ing parameters. In addition to this, the algorithm maysystem against a system with Active Disks as the nhumber
require a variable amount of computation since it is solvingof disks is increased from 1 to 10. As predicted by our
an optimization problem using a variable number of itera-model, we see that for a small number of disks, the single
tions to converge to the correct parameters. Unlike theserver system performs better. The server processor is four
other applications, the per byte cost of this algorithm variesimes as powerful as a single Active Disk processor and
significantly with the data being processed. The averagean perform the computation at full disk rate. We see that
computation cost of each of the algorithms discussed inthe server system CPU saturates at 25.7 MB/s with two
this section is shown in Table 2 in the next section. disks and performance does not improve as two additional
For the Active Disks system, this application operatesdisks are added, while the Active Disks system continues
similarly to the edge detection. The reference image is proto scale linearly to 58 MB/s with 10 disks. Our prototype
vided to all the drives and the registration computation forsystem was limited to 10 Active Disks by the amount of
each processed image is performed directly at the drivesardware we had available, and four traditional disks by
with only the final parameters (1.5 KB for each image)the length limitations of Ultra SCSI, but if we extrapolate
returned to the central server. The application reduces thihe data from the prototype to a larger system with 60
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disks, the smallest of the systems in Table 1, we wouldf the algorithm and the larger the state that must be held
expect throughput near the 360 MB/s that our model preon disk. We expect that the support will tend toward the
dicts for this configuration. higher values since it is difficult to deal with a large num-
ber of rules, and the lower the support, the less compelling

In Fiaure 5. we show the results for the first two passes 0}he generated rules will be. For very low values of the sup-
'gure 5, w W u Irstiwo p port, though, the limited memory at Active Disk may

the frequent sets application (tHeitemsetsand 2-item- become an issue. Modern disk drives today contain

sety. We again see the crossover point at four dnvesbetween 1 MB and 4 MB of cache memory, so we might
where the server system bottlenecks at 8.4 MB/s and per-

. . . . expect 4 - 16 MB in the timeframe in which Active Disks
formance no longer improves, while the Active Disks sys- . .
. X ) could become available. This means that care must be
tem continues to scale linearly to 18.9 MB/s. Figure 5b

. . “taken in designing algorithms and in choosing when to take

illustrates an important property of the frequent sets appli- ; .
. _ .. advantage of execution at the disks.

cation that affects whether or not a particular analysis is

appropriate for running on Active Disks. The chart shows®.3 Multimedia

the memory requirements across a range of input suppoRigure 6 shows the results for the image processing appli-

values on two different databases. The lower a supportations. As we see in Table 2, the image processing appli-

value, the more itemsets are generated in successive phasedions require much more CPU time than search or

5.2 Data Mining - Frequent Sets
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Image Registration Throughput Figure 7: Validation of the analytical model against the prototype measurements. The
080 values predicted by the model using the system and application parameters in
Section 5.4 are superimposed as dashed lines on the measurements from the
_osot (d) prototype systems. The djfferepces are within.15% for search and ]‘requent sets. Edge
2 detection and image registration do not precisely fit the assumptions of our model.
= Both applications suffer additional, unmodelled 1/O stall time because they read from
50407 the disks in image-sized chunks, rather than streaming in sequential accesses as
< e search and frequent sets are able to do. This means that there is disk access time that
3 P4 cannot be overlapped with computation, reducing the throughput. There is serial
£o020f I_,I7 """"""" overhead in all of the applications. This is largely amortized by the large size of the
R/ databases used in search and frequent sets, but shows up in the image processing
= applications that process less total data. The gray lines on the figures estimate the
0.00 2 4 6 8 10 expected performance when these factors are accounted for. This estimated

Number of Disks performance is now within 15%.

frequent sets do, leading to much lower throughputs on  Estimating the applications’ selectivity was a straight-
both systems. The edge detection bottlenecks the servésrward exercise of counting bytes and these are shown in
CPU at 1.4 MB/s, while the Active Disk system scales toTable 2. Estimating the number of cycles per byte was not
3.2 MB/s with 10 disks. Image registration is the mostso straightforward. We began by instrumenting the server
CPU-intensive of the applications we have considered. ltmplementation of each application to determine the total
achieves only 225 KB/s on the server system, and scales ttumber of cycles spent for the entire computation when all
650 KB/s with 10 Active Disks. code and data are locally cached, and dividing this by the
5.4 Model Validation total number of bytes processed. This ignores the cost of
The graphs of Figure 4, 5, and 6 confirm the shape of tha forming, issuing and completing the physical SCSI disk

operatlons measured in a previous study as 0.58 microsec-
model in Section 3. To confirm the values, we need the

specific arameters  of this testbed.  We Snds on a 150 MHz Alpha or 10.6 cycles per byte
pecit P ! e[Patterson95] We add this to our “hot cache” numbers and
a, = 133/ 500= 1/3.8 (estimated directly from the clock

report the resulting estimate of the cycles per byte required
rates because the processors use the same basic chip, §fjdeach application in Table 2.

the code is identical for both cases). Ideally, we would have  Figyre 7 combines the results for all four applications
aq = a, = 1 for our tests, but this was not possible in our and superimposes the predictions of the model based on

testbed. Instead, = 14 MB/s 1, = 7.5 MB/s 1, = 60 MB/s these system and application parameters. The search and
andr = 10 MB/s . frequent sets applications show strong agreement between
n the model and the measurements. The largest error, a 14%
application computation memory selectivity  |parameter
(cycles/byte) (KB)
Search 23.1 72 80,500 k=10
Frequent Sets 61.1 620 15,000 5=0.259
Edge Detection 288 1776 110 t=75
Image Registration 1495 672 150 -

Table 2: Parameters of the applications presented in the text: computation time per byte of
data, memory required at each Active Disk, and the selectivity factor in the network.




disagreement between the server model and implementaxecute these types of remote functions as well. In particu-
tion of the search may reflect an overestimate of the cyclesar, we might expect Active Disks to participate as part of a
per byte devoted to disk processing because the estimatedssk-directed I/O model, where scatter/gather accesses are
based on an older machine with a less aggressive supersagptimized using local information at the disks [Kotz94]. Or
lar processor. The other two applications, however, differin prefetching systems where disks are provided with hints
significantly from the model predictions. The problem about future accesses [Patterson95].

with these applications is that they do not yet overlap all A promising variant of these common optimizations is
disk accesses with computation, as our model assumes. Fgiterconnect transfescheduling While network schedul-
example, the edge detection application reads 256 KBng alone cannot be expected to yield benefits like we have
images as a single request and, since the operating syst&fBen in this paper, it can be an integral part of Active Disk
read-ahead is not deep enough, causes additional stall t”%%mputations for complex operations such as hash-join

as each imag(_a Is fetched: Us_ing asynchron_ous requests ﬁ{itsuregawass, DeWitt85] or variants of sort [Salzberg90,
more aggressive prefetching in the application should corz

rect this inefficiency. An additional contributor to this DeWitt91]. The key observatlon_ IS. that if data I.S go_mg to
error is the serial portion of the applications which affectsMOVe thr_ough the network after“rF IS Eead from disk, it may
the image processing applications more seriously sinc@® POssible to send it to the “right” place under Active
they process less total data than the other two. To estimafgisks control, reducing network traffic through scheduling
the performance of these applications if the overlappingft the disk, rather than sending it to the “wrong” place and
were improved, we estimated the total stall time experithen communicating among the processing nodes.
enced by each application and subtracted it from the appli- Consider a parallel sample sort algorithm running
cation run time.We report these “improved” prototype across a network of workstations similar to the setup of
estimates as additional lines in Figure 7c and d. With thiS\]owSort [Arpaci-DusseauQ?]_ The a|gorithm is Composed
modification, our model predicts performance within 15% of 3 sample phase and a sort phase [Blelloch98]. During
for all applications. Given our goal of using the model 10 \he sample phase, a subset of the total data is read and a
devglop_ intuition about the performance of Active Disks histogram is created allowing the key space to be divided
applications, these are strong results. . .

into n buckets of roughly equal size. In the parallel server
6 Discussion (cluster) version of this sort, the entire data set is then

The largest single benefit from using Active Disks, and thel) read as is into the nodes from their local disks, 2)

principle effect in our experiments, is tparallelismavail- exchanged across the network according to the key space

able in large storage systems. Although processing pOWE\gistribution, 3) sorted locally at each node, and 4) written
) ack to the assigned disks.

on disk drives will always be less than on top-of-the-line . L . .

. Using network scheduling in an Active Disks system,
server CPUs, there will very often be more aggregate CPU e can remove the need for step 2 by having the drives pe
power in the disks than the server. Applications that can bf’ ' ve n r step by having the drives per-

partitioned to take advantage of this parallelism, and tha orm the read and distribution operations at the same time.

can be “split” across the server and drive CPUs, have avail-r.]Stead of sending all data to a particular node, the drive is

able a much higher total computational power than appli—glven the key ranges determined in the sample phase and

) . responds to a request from clientwith only the data
cations running only on the server. “belonging” to clientn as its portion of the key space. This
The other large benefit of Active Disks is the ability to ging P Y space.

dramatically reduce interconnect bandwidthfiering at means that data destined for a particular node will get to
the disks. In many systems in use today, interconnect bandfat node as soon as p035|blle, and will never need to be
width is at a premium compared to computational power€xchanged among nodes. This reduces the number of tran-
and is all too often a significant bottleneck. If an applica- Sits of all the data across the network from three to two. In
tion is scanning large objects in order to select only spesystems where the network is the bottleneck resource, this
cific records or fields or gather summary statistics, a largewill improve overall performance of the algorithm by up to
fraction of the data otherwise moved across the interconene-third.

nect will simply be discarded, dramatically reducing the
bottleneck. 7 Related Work

These two advantages are the focus of this papefhe pasic idea of executing functions in processing ele-
because they promise orders of magnitude potentighents directly attached to individual disks was explored
improvements. In storage systems research, however, g ensively in the context of database machines such as

most common application-specific - optimizations arec-aggm [Su75], RAP [Ozkarahan75], and numerous oth-

scheduling, batching and prefetching of disk operations, s (pewitt81]. These machines fell out of favor due to the
[Bitton88, Ruemmler91]. Active Disks can be expected 10jimited performance of disks at the time and the complex-



ity of building and programming special-purpose hardware  There are a variety of areas to be explored before the
that could only handle limited functions. Instead, databaséenefits presented here can be put into practice. Providing
research has developed large-scale, shared-nothing dat@safe environment for application code inside the drive in

base servers with commodity processing elements. It hagyger to both protect the integrity of data on the drive and

recently been suggested that the logical extension is to pegnsre proper function in the presence of misbehaved

iorm ?” databasg processing inside prograrnmableapplication code is critical. The issue of resource manage-
smart” system peripherals [Gray97].

. : . ment becomes considerably more complex as the computa-
Our work on Active Disks follows from our prior y P P

work on network-attached secure disks (NASD), in WhiChtion becomes more distribute_d. Acti\_/e_ Disks will _need.to
we exploit computational power at storage for parallel and™ake more complex scheduling decisions than disk drives
network file system functions, as well as traditional storaged© today, but they also open many new areas for optimiza-
optimizations [Gibson97, Gibson98]. Our initial work dis- tion by exploiting the much richer interfaces they provide.
cussed several classes of applications that can benefit frog)] References
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